skip to main content


Search for: All records

Creators/Authors contains: "Thind, Arashdeep S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    Wildfires emit large amounts of black carbon and light-absorbing organic carbon, known as brown carbon, into the atmosphere. These particles perturb Earth’s radiation budget through absorption of incoming shortwave radiation. It is generally thought that brown carbon loses its absorptivity after emission in the atmosphere due to sunlight-driven photochemical bleaching. Consequently, the atmospheric warming effect exerted by brown carbon remains highly variable and poorly represented in climate models compared with that of the relatively nonreactive black carbon. Given that wildfires are predicted to increase globally in the coming decades, it is increasingly important to quantify these radiative impacts. Here we present measurements of ensemble-scale and particle-scale shortwave absorption in smoke plumes from wildfires in the western United States. We find that a type of dark brown carbon contributes three-quarters of the short visible light absorption and half of the long visible light absorption. This strongly absorbing organic aerosol species is water insoluble, resists daytime photobleaching and increases in absorptivity with night-time atmospheric processing. Our findings suggest that parameterizations of brown carbon in climate models need to be revised to improve the estimation of smoke aerosol radiative forcing and associated warming.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Lead halide perovskites have emerged as a promising class of semiconductors; however, they suffer from issues related to lead toxicity and instability. We report results of a first-principles-based design of heavy-metal-based oxynitrides as alternatives to lead halide perovskites. We have used density functional theory calculations to search a vast composition space of ABO2N and ABON2 compounds, where B is a p-block cation and A is an alkaline, alkali-earth, rare-earth, or transition metal cation, and identify 10 new ABO2N oxynitride semiconductors that we expect to be formable. Specifically, we discover a new family of ferroelectric semiconductors with A3+SnO2N stoichiometry (A = Y, Eu, La, In, and Sc) in the LuMnO3-type structure, which combine the strong bonding of metal oxides with the low carrier effective mass and small, tunable band gaps of the lead halide perovskites. These tin oxynitrides have predicted direct band gaps ranging from 1.6 to 3.3 eV and a sizable electric polarization up to 17 μC/cm2, which is predicted to be switchable by an external electric field through a nonpolar phase. With their unique combination of polarization, low carrier effective mass, and band gaps spanning the entire visible spectrum, we expect ASnO2N ferroelectric semiconductors will find useful applications as photovoltaics and photocatalysts as well as for optoelectronics. 
    more » « less
  5. null (Ed.)
    Abstract Superconducting resonators with high quality factors have been fabricated from aluminum films, suggesting potential applications in quantum computing. Improvement of thin film crystal quality and removal of void and pinhole defects will improve quality factor and functional yield. Epitaxial aluminum films with superb crystallinity, high surface smoothness, and interface sharpness were successfully grown on the c-plane of sapphire using sputter beam epitaxy. This study assesses the effects of varying substrate preparation conditions and growth and prebake temperatures on crystallinity and smoothness. X-ray diffraction and reflectivity measurements yield extensive Laue oscillations and Kiessig thickness fringes for films grown at 200 °C under 15 mTorr Ar, indicating excellent crystallinity and surface smoothness; moreover, an additional substrate preparation procedure which involves (1) a modified substrate cleaning procedure and (2) prebake at 700 °C in 20 mTorr O 2 is shown by atomic force microscopy to yield nearly pinhole-free film growth while maintaining epitaxy and high crystal quality. The modified cleaning procedure is environmentally friendly and eliminates the acid etch steps common to conventional sapphire preparation, suggesting potential industrial application both on standard epitaxial and patterned surface sapphire substrates. 
    more » « less
  6. null (Ed.)
    Abstract Crystalline solids exhibiting glass-like thermal conductivity have attracted substantial attention both for fundamental interest and applications such as thermoelectrics. In most crystals, the competition of phonon scattering by anharmonic interactions and crystalline imperfections leads to a non-monotonic trend of thermal conductivity with temperature. Defect-free crystals that exhibit the glassy trend of low thermal conductivity with a monotonic increase with temperature are desirable because they are intrinsically thermally insulating while retaining useful properties of perfect crystals. However, this behavior is rare, and its microscopic origin remains unclear. Here, we report the observation of ultralow and glass-like thermal conductivity in a hexagonal perovskite chalcogenide single crystal, BaTiS 3 , despite its highly symmetric and simple primitive cell. Elastic and inelastic scattering measurements reveal the quantum mechanical origin of this unusual trend. A two-level atomic tunneling system exists in a shallow double-well potential of the Ti atom and is of sufficiently high frequency to scatter heat-carrying phonons up to room temperature. While atomic tunneling has been invoked to explain the low-temperature thermal conductivity of solids for decades, our study establishes the presence of sub-THz frequency tunneling systems even in high-quality, electrically insulating single crystals, leading to anomalous transport properties well above cryogenic temperatures. 
    more » « less
  7. Abstract

    Experimentally quantifying the viscoplastic rheology of olivine at the high stresses and low temperatures of the shallow lithosphere is challenging due to olivine's propensity to deform by brittle mechanisms at these conditions. In this study, we use microscale uniaxial compression tests to investigate the rheology of an olivine single crystal at room pressure and temperature. Pillars with nominal diameters of 1.25 μm were prepared using a focused ion beam milling technique and were subjected to sustained axial stresses of several gigapascal. The majority of the pillars failed after dwell times ranging from several seconds to a few hours. However, several pillars exhibited clear evidence of plastic deformation without failure after 4–8 hr under load. The corresponding creep strain rates are estimated to be on the order of 10−6to 10−7 s−1. The uniaxial stresses required to achieve this deformation (4.1–4.4 GPa) are in excellent agreement with complementary data obtained using nanoindentation techniques. Scanning transmission electron microscopy observations indicate that deformation occurred along amorphous shear bands within the deformed pillars. Electron energy loss spectroscopy measurements revealed that the bands are enriched in Fe and depleted in Mg. We propose that inhomogeneities in the cation distribution in olivine concentrate stress and promote the amorphization of the Fe‐rich regions. The time dependence of catastrophic failure events suggests that the amorphous bands must grow to some critical length scale to generate an unstable defect, such as a shear crack.

     
    more » « less
  8. SUMMARY

    Low-temperature plastic rheology of calcite plays a significant role in the dynamics of Earth's crust. However, it is technically challenging to study plastic rheology at low temperatures because of the high confining pressures required to inhibit fracturing. Micromechanical tests, such as nanoindentation and micropillar compression, can provide insight into plastic rheology under these conditions because, due to the small scale, plastic deformation can be achieved at low temperatures without the need for secondary confinement. In this study, nanoindentation and micropillar compression experiments were performed on oriented grains within a polycrystalline sample of Carrara marble at temperatures ranging from 23 to 175 °C, using a nanoindenter. Indentation hardness is acquired directly from nanoindentation experiments. These data are then used to calculate yield stress as a function of temperature using numerical approaches that model the stress state under the indenter. Indentation data are complemented by uniaxial micropillar compression experiments. Cylindrical micropillars ∼1 and ∼3 μm in diameter were fabricated using a focused ion beam-based micromachining technique. Yield stress in micropillar experiments is determined directly from the applied load and micropillar dimensions. Mechanical data are fit to constitutive flow laws for low-temperature plasticity and compared to extrapolations of similar flow laws from high-temperature experiments. This study also considered the effects of crystallographic orientation on yield stress in calcite. Although there is a clear orientation dependence to plastic yielding, this effect is relatively small in comparison to the influence of temperature.

     
    more » « less